SU-E-T-488: Dose Calculation Model Using the Simplified Monte Carlo Method with an Initial Beam Model Adapted to a Beam-Wobbling System.
نویسندگان
چکیده
PURPOSE We have developed an accurate dose calculation model based on a simplified Monte Carlo (SMC) method adapted to a beam-wobbling delivery system at National Cancer Center Hospital East (NCCHE). We used an initial beam model specific to the beam-wobbling system to reproduce accurately different dose distributions in two lateral directions (x- and y-directions) perpendicular to each other. METHODS The SMC calculates a dose distribution by tracking individual protons. The SMC starts tracking protons at an entrance of a range compensator. Protons are generated in an initial phase space adapted to the wobbler system. Since two wobbling-magnets are located at separate places with different distances from the iso-center, different dose distributions are formed in x- and y-directions. We derived an initial phase space distribution for the beam-wobbling system using an analytical method. We used the SMC method with the initial beam model to calculate dose distributions accurately. To verify accuracy of the calculation method, we measured the dose distribution in a homogeneous phantom formed by 235 MeV protons passing through a L-shaped range compensator. We used a 2D-array of parallel-plate ionization chambers (2D Array seven29®) to measure dose distributions with a sampling period of 5 mm. RESULTS The measured dose distribution in the x-direction was different from that in the y-direction. Our calculation model reproduces the measurement results well in both lateral directions. In addition, the calculation reproduced the dose increments in edge regions contributed by edge-scattered protons in collimator. It indicates the advantage of the SMC. CONCLUSIONS A dose calculation model has been developed based on the simplified Monte Carlo method applied to a beam-wobbling system. By adapting the initial beam model to the wobbling system, the SMC method is found to reproduce observed different dose distributions in x- and y-directions well.
منابع مشابه
Benchmarking of Monte Carlo model of 6 Mv photon beam produced by Siemens Oncor® linear accelerator: determination of initial electron beam parameters in comparison with measurement
Introduction: The aim of this study was to investigate the initial electron beam parameters for Monte Carlo model of 6MV photon beam produced by Siemens Oncor® linear accelerator. Materials and Methods: In this study, the EGSnrc Monte Carlo user codes BEAMnrc and DOSXYZnrc were used. The beamnrc code were used for modelling of a 6 MV photon beam produced by...
متن کاملThe comparison between 6 MV Primus LINAC simulation output using EGSnrc and commissioning data
Introduction: Monte Carlo calculation method is considered to be the most accurate method for dose calculation in radiotherapy. The purpose of this research is comparison between 6 MV Primus LINAC simulation output with commissioning data using EGSnrc and build a Monte Carlo geometry of 6 MV Primus LINAC as realistically as possible. The BEAMnrc and DOSXYZnrc (EGSnrc package) M...
متن کاملA Monte Carlo Study for Photoneutron Dose Estimations around the High-Energy Linacs
Background: High-energy linear accelerator (linac) is a valuable tool and the most commonly device for external beam radiation treatments in cancer patients. In the linac head, high-energy photons with energies above the threshold of interaction produce photoneutrons. These photoneutrons deliver the extra dose to the patients in the planning treatment and increase the risk of secondary cancer.O...
متن کاملComparison of measured and Monte Carlo calculated dose distributions from “circular collimators” for radiosurgical beams
Background: Stereotactic radiosurgery is an important clinical tool for the treatment of small lesions in the brain, including benign conditions, malignant and localized metastatic tumors. A dosimetry study was performed for Elekta ‘Synergy S ’ as a dedicated Stereotactic radiosurgery unit, capable of generating circular radiation fields with diameters of 1-5 cm at isocentre using the BEAM/EGS4...
متن کاملMonte Carlo Simulation of Electron Beams produced by LIAC Intraoperative Radiation Therapy Accelerator
Background: One of the main problems of dedicated IORT accelerators is to determine dosimetric characteristics of the electron beams. Monte Carlo simulation of IORT accelerator head and produced beam will be useful to improve the accuracy of beam dosimetry.Materials and Methods: Liac accelerator head was modeled using the BEAMnrcMonte Carlo simulation system. Phase-space files were generated at...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 39 6Part17 شماره
صفحات -
تاریخ انتشار 2012